团队名称:Cambrain_20
CNN算法简介
我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍:
卷积层:提取特征。“不全连接,参数共享”的特点大大降低了网络参数,保证了网络的稀疏性,防止过拟合。之所以可以“参数共享”,是因为样本存在局部相关的特性。
池化层:有MaxPool和AveragePool等。其中MaxPool应用广泛。因为经过MaxPool可以减小卷积核的尺寸,同时又可以保留相应特征,所以主要用来降维。
全连接层:在全连接的过程中丢失位置信息,降低了学习过程中的参数敏感度。
RELU激活函数:该函数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x>0 时,梯度恒为1,无梯度耗散问题,收敛快;当x<0 时,该层的输出为0。
CNN设计流程:
1、构建缓冲区
2、将卷积操作展开成乘加操作。
3、层层复用。
design file设计图
综合之后设计部分设计图
仿真测试结果